Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 099, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.099
(Mi sigma1398)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory

Manuel F. Acosta-Humáneza, Primitivo B. Acosta-Humánezbc, Erick Tuiránd

a Departamento de Física, Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria 111321, Bogotá, Colombia
b Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Sede 3, Carrera 59 No. 58–135, Barranquilla, Colombia
c Instituto Superior de Formación Docente Salomé Ureña - ISFODOSU, Recinto Emilio Prud'Homme, Calle R. C. Tolentino 51, esquina 16 de Agosto, Los Pepines, Santiago de los Caballeros, República Dominicana
d Departamento de Física y Geociencias, Universidad del Norte, Km 5 Vía a Puerto Colombia AA 1569, Barranquilla, Colombia
Full-text PDF (534 kB) Citations (2)
References:
Abstract: In this paper we start with proving that the Schrödinger equation (SE) with the classical $12-6$ Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such differential equation. We study the $10-6$ potential through DGT and SUSYQM; being it one of the two partner potentials built with a superpotential of the form $w(r)\propto 1/r^5$. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so called De Boer principle of corresponding states. A comparison of the second virial coefficient $B(T)$ for both potentials shows a good agreement for low temperatures. As a consequence of these results we propose the $10-6$ potential as an integrable alternative to be applied in further studies instead of the original $12-6$ L-J potential. Finally we study through DGT and SUSYQM the integrability of the SE with a generalized $(2\nu-2)-\nu$ L-J potential. This analysis do not include the study of square integrable wave functions, excited states and energies different than zero for the generalization of L-J potentials.
Keywords: Lennard-Jones potential; differential Galois theory; SUSYQM; De Boer principle of corresponding states.
Funding agency Grant number
Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación FP44842-013-2018
German Academic Exchange Service (DAAD)
P.A.-H. thanks to Universidad Simón Bolívar, Research Project Métodos Algebraicos y Combinatorios en Sistemas Dinámicos y Física Matemática. He also acknowledges and thanks the support of COLCIENCIAS through grant numbers FP44842-013-2018 of the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación. E.T. wishes to thank the German Service of Academic Exchange (DAAD) for financial support, and Professor M. Reuter at the Institute of Physics in Uni-Mainz for stimulating discussions about this work.
Received: May 1, 2018; in final form September 14, 2018; Published online September 19, 2018
Bibliographic databases:
Document Type: Article
MSC: 12H05; 81V55; 81Q05
Language: English
Citation: Manuel F. Acosta-Humánez, Primitivo B. Acosta-Humánez, Erick Tuirán, “Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory”, SIGMA, 14 (2018), 099, 21 pp.
Citation in format AMSBIB
\Bibitem{AcoAcoTui18}
\by Manuel~F.~Acosta-Hum\'anez, Primitivo~B.~Acosta-Hum\'anez, Erick~Tuir\'an
\paper Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
\jour SIGMA
\yr 2018
\vol 14
\papernumber 099
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1398}
\crossref{https://doi.org/10.3842/SIGMA.2018.099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445495000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055042816}
Linking options:
  • https://www.mathnet.ru/eng/sigma1398
  • https://www.mathnet.ru/eng/sigma/v14/p99
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :30
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024