Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 081, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.081
(Mi sigma1380)
 

This article is cited in 2 scientific papers (total in 2 papers)

Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$

Anna Finoa, Ines Kathb

a Dipartimento di Matematica G. Peano, Università di Torino, Via Carlo Alberto 10, Torino, Italy
b Institut für Mathematik und Informatik, Universität Greifswald, Walther-Rathenau-Str. 47, D-17487 Greifswald, Germany
Full-text PDF (499 kB) Citations (2)
References:
Abstract: By [arXiv:1604.00528], a list of possible holonomy algebras for pseudo-Riemannian manifolds with an indecomposable torsion free $\mathrm{G}_{2}^*$-structure is known. Here indecomposability means that the standard representation of the algebra on ${\mathbb R}^{4,3}$ does not leave invariant any proper non-degenerate subspace. The dimension of the socle of this representation is called the type of the Lie algebra. It is equal to one, two or three. In the present paper, we use Cartan's theory of exterior differential systems to show that all Lie algebras of Type I from the list in [arXiv:1604.00528] can indeed be realised as the holonomy of a local metric. All these Lie algebras are contained in the maximal parabolic subalgebra $\mathfrak p_1$ that stabilises one isotropic line of ${\mathbb R}^{4,3}$. In particular, we realise $\mathfrak p_1$ by a local metric.
Keywords: holonomy; pseudo-Riemannian manifold; exterior differential system; torsion-free $\mathrm{G}$-structures.
Received: October 24, 2017; in final form July 29, 2018; Published online August 3, 2018
Bibliographic databases:
Document Type: Article
MSC: 53C29; 53C50; 53C10
Language: English
Citation: Anna Fino, Ines Kath, “Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$”, SIGMA, 14 (2018), 081, 28 pp.
Citation in format AMSBIB
\Bibitem{FinKat18}
\by Anna~Fino, Ines~Kath
\paper Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$
\jour SIGMA
\yr 2018
\vol 14
\papernumber 081
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma1380}
\crossref{https://doi.org/10.3842/SIGMA.2018.081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440858100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051861689}
Linking options:
  • https://www.mathnet.ru/eng/sigma1380
  • https://www.mathnet.ru/eng/sigma/v14/p81
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025