Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 012, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.012
(Mi sigma138)
 

This article is cited in 11 scientific papers (total in 11 papers)

Boundary Liouville Theory: Hamiltonian Description and Quantization

Harald Dorna, George Jorjadzeb

a Institut für Physik der Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
b Razmadze Mathematical Institute, M. Aleksidze 1, 0193, Tbilisi, Georgia
References:
Abstract: The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in $2d$ Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr–Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^{-\varphi }$ in terms of free field exponentials is constructed in the hyperbolic sector.
Keywords: Liouville theory; strings and branes; $2d$ conformal group; boundary conditions; symplectic structure; canonical quantization.
Received: October 17, 2006; in final form December 11, 2006; Published online January 12, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: Harald Dorn, George Jorjadze, “Boundary Liouville Theory: Hamiltonian Description and Quantization”, SIGMA, 3 (2007), 012, 18 pp.
Citation in format AMSBIB
\Bibitem{DorJor07}
\by Harald Dorn, George Jorjadze
\paper Boundary Liouville Theory: Hamiltonian Description and Quantization
\jour SIGMA
\yr 2007
\vol 3
\papernumber 012
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma138}
\crossref{https://doi.org/10.3842/SIGMA.2007.012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280338}
\zmath{https://zbmath.org/?q=an:1135.37025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236811}
Linking options:
  • https://www.mathnet.ru/eng/sigma138
  • https://www.mathnet.ru/eng/sigma/v3/p12
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :50
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024