Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 079, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.079
(Mi sigma1378)
 

Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections

Leonard Huang

Department of Mathematics, University of Colorado at Boulder, Campus Box 395, 2300 Colorado Avenue, Boulder, CO 80309-0395, USA
References:
Abstract: We build metrized quantum vector bundles, over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi—Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov–Hausdorff propinquity.
Keywords: quantum torus; generically transcendental; quantum metric space; metrized quantum vector bundle; Riemannian metric; Levi–Civita connection.
Received: March 13, 2018; in final form July 21, 2018; Published online July 29, 2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Leonard Huang, “Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections”, SIGMA, 14 (2018), 079, 21 pp.
Citation in format AMSBIB
\Bibitem{Hua18}
\by Leonard~Huang
\paper Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi--Civita Connections
\jour SIGMA
\yr 2018
\vol 14
\papernumber 079
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1378}
\crossref{https://doi.org/10.3842/SIGMA.2018.079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440238800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051850729}
Linking options:
  • https://www.mathnet.ru/eng/sigma1378
  • https://www.mathnet.ru/eng/sigma/v14/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :30
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024