Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 078, 34 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.078
(Mi sigma1377)
 

This article is cited in 2 scientific papers (total in 2 papers)

$t$-Unique Reductions for Mészáros's Subdivision Algebra

Darij Grinberg

School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN 55455, USA
Full-text PDF (676 kB) Citations (2)
References:
Abstract: Fix a commutative ring $\mathbf{k}$, two elements $\beta \in\mathbf{k}$ and $\alpha\in\mathbf{k}$ and a positive integer $n$. Let $\mathcal{X}$ be the polynomial ring over $\mathbf{k}$ in the $n(n-1) /2$ indeterminates $x_{i,j}$ for all $1\leq i<j\leq n$. Consider the ideal $\mathcal{J}$ of $\mathcal{X}$ generated by all polynomials of the form $x_{i,j}x_{j,k}-x_{i,k} ( x_{i,j}+x_{j,k}+\beta ) -\alpha$ for $1\leq i<j<k\leq n$. The quotient algebra $\mathcal{X}/\mathcal{J}$ (at least for a certain choice of $\mathbf{k}$, $\beta$ and $\alpha$) has been introduced by Karola Mészáros in [Trans. Amer. Math. Soc. 363 (2011), 4359–4382] as a commutative analogue of Anatol Kirillov's quasi-classical Yang–Baxter algebra. A monomial in $\mathcal{X}$ is said to be pathless if it has no divisors of the form $x_{i,j}x_{j,k}$ with $1\leq i<j<k\leq n$. The residue classes of these pathless monomials span the $\mathbf{k}$-module $\mathcal{X}/\mathcal{J}$, but (in general) are $\mathbf{k}$-linearly dependent. More combinatorially: reducing a given $p\in\mathcal{X}$ modulo the ideal $\mathcal{J}$ by applying replacements of the form $x_{i,j}x_{j,k}\mapsto x_{i,k} ( x_{i,j}+x_{j,k}+\beta ) +\alpha$ always eventually leads to a $\mathbf{k}$-linear combination of pathless monomials, but the result may depend on the choices made in the process. More recently, the study of Grothendieck polynomials has led Laura Escobar and Karola Mészáros [Algebraic Combin. 1 (2018), 395–414] to defining a $\mathbf{k}$-algebra homomorphism $D$ from $\mathcal{X}$ into the polynomial ring $\mathbf{k} [ t_{1},t_{2},\ldots,t_{n-1} ] $ that sends each $x_{i,j}$ to $t_{i}$. We show the following fact (generalizing a conjecture of Mészáros): If $p\in\mathcal{X}$, and if $q\in\mathcal{X}$ is a $\mathbf{k}$-linear combination of pathless monomials satisfying $p\equiv q\operatorname{mod}\mathcal{J}$, then $D(q) $ does not depend on $q$ (as long as $\beta$$\alpha$ and $p$ are fixed). Thus, the above way of reducing a $p\in\mathcal{X}$ modulo $\mathcal{J}$ may lead to different results, but all of them become identical once $D$ is applied. We also find an actual basis of the $\mathbf{k}$-module $\mathcal{X}/\mathcal{J}$, using what we call forkless monomials.
Keywords: subdivision algebra; Yang–Baxter relations; Gröbner bases; Arnold relations; Orlik–Terao algebras; noncommutative algebra.
Received: November 22, 2017; in final form July 15, 2018; Published online July 26, 2018
Bibliographic databases:
Document Type: Article
MSC: 05E15; 05E40
Language: English
Citation: Darij Grinberg, “$t$-Unique Reductions for Mészáros's Subdivision Algebra”, SIGMA, 14 (2018), 078, 34 pp.
Citation in format AMSBIB
\Bibitem{Gri18}
\by Darij~Grinberg
\paper $t$-Unique Reductions for M\'{e}sz\'aros's Subdivision Algebra
\jour SIGMA
\yr 2018
\vol 14
\papernumber 078
\totalpages 34
\mathnet{http://mi.mathnet.ru/sigma1377}
\crossref{https://doi.org/10.3842/SIGMA.2018.078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440238400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051846391}
Linking options:
  • https://www.mathnet.ru/eng/sigma1377
  • https://www.mathnet.ru/eng/sigma/v14/p78
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025