Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 072, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.072
(Mi sigma1371)
 

This article is cited in 7 scientific papers (total in 7 papers)

Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions

Mourad E. H. Ismaila, Erik Koelinkb, Pablo Románc

a University of Central Florida, Orlando, Florida 32816, USA
b IMAPP, Radboud Universiteit, PO Box 9010, 6500GL Nijmegen, The Netherlands
c CIEM, FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad Universitaria, Córdoba, Argentina
Full-text PDF (506 kB) Citations (7)
References:
Abstract: Burchnall's method to invert the Feldheim–Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its $q$-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite support, including the Wilson and Askey–Wilson polynomials. An integrated version gives the possibility to give alternate expression for orthogonal polynomials with respect to a modified weight. This gives expansions for polynomials, such as Hermite, Laguerre, Meixner, Charlier, Meixner–Pollaczek and big $q$-Jacobi polynomials and big $q$-Laguerre polynomials. We show that one can find expansions for the orthogonal polynomials corresponding to the Toda-modification of the weight for the classical polynomials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre, Charlier, Meixner, Meixner–Pollaczek and Krawtchouk polynomials.
Keywords: orthogonal polynomials; Askey scheme and its $q$-analogue; expansion formulas; Toda lattice.
Funding agency Grant number
Consejo Nacional de Investigaciones Cientificas y Tecnicas PIP 112-200801-01533
Fondo para la Investigación Científica y Tecnológica PICT 2014-3452
Secretaria de Ciencia y Tecnología – Universidad Nacional de Córdoba
The work of Pablo Rom\'an was supported by Radboud Excellence Fellowship, CONICET grant PIP 112-200801-01533, FONCyT grant PICT 2014-3452 and by SeCyT-UNC.
Received: February 27, 2018; in final form July 11, 2018; Published online July 17, 2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Mourad E. H. Ismail, Erik Koelink, Pablo Román, “Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions”, SIGMA, 14 (2018), 072, 24 pp.
Citation in format AMSBIB
\Bibitem{IsmKoeRom18}
\by Mourad~E.~H.~Ismail, Erik~Koelink, Pablo~Rom\'an
\paper Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
\jour SIGMA
\yr 2018
\vol 14
\papernumber 072
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma1371}
\crossref{https://doi.org/10.3842/SIGMA.2018.072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439655200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050356045}
Linking options:
  • https://www.mathnet.ru/eng/sigma1371
  • https://www.mathnet.ru/eng/sigma/v14/p72
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025