Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 068, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.068
(Mi sigma1367)
 

This article is cited in 2 scientific papers (total in 2 papers)

Numerical Approach to Painlevé Transcendents on Unbounded Domains

Christian Klein, Nikola Stoilov

Institut de Mathématiques de Bourgogne, UMR 5584, Université de Bourgogne-Franche-Comté, 9 avenue Alain Savary, 21078 Dijon Cedex, France
Full-text PDF (522 kB) Citations (2)
References:
Abstract: A multidomain spectral approach for Painlevé transcendents on unbounded domains is presented. This method is designed to study solutions determined uniquely by a, possibly divergent, asymptotic series valid near infinity in a sector and approximates the solution on straight lines lying entirely within said sector without the need of evaluating truncations of the series at any finite point. The accuracy of the method is illustrated for the example of the tritronquée solution to the Painlevé I equation.
Keywords: Painlevé equations; spectral methods.
Funding agency Grant number
Federación Española de Enfermedades Raras
Agence Nationale de la Recherche ANR-FWF
Marie Sklodowska-Curie Actions
This work was partially supported by the PARI and FEDER programs in 2016 and 2017, by the ANR-FWF project ANuI and by the Marie-Curie RISE network IPaDEGAN.
Received: April 18, 2018; in final form July 2, 2018; Published online July 12, 2018
Bibliographic databases:
Document Type: Article
MSC: 34M55; 65L10
Language: English
Citation: Christian Klein, Nikola Stoilov, “Numerical Approach to Painlevé Transcendents on Unbounded Domains”, SIGMA, 14 (2018), 068, 10 pp.
Citation in format AMSBIB
\Bibitem{KleSto18}
\by Christian~Klein, Nikola~Stoilov
\paper Numerical Approach to Painlev\'e Transcendents on Unbounded Domains
\jour SIGMA
\yr 2018
\vol 14
\papernumber 068
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1367}
\crossref{https://doi.org/10.3842/SIGMA.2018.068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439333700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050351077}
Linking options:
  • https://www.mathnet.ru/eng/sigma1367
  • https://www.mathnet.ru/eng/sigma/v14/p68
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :37
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024