Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 066, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.066
(Mi sigma1365)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quantum Klein Space and Superspace

Rita Fioresia, Emanuele Latiniab, Alessio Marranic

a Dipartimento di Matematica, Universitá di Bologna, Piazza di Porta S. Donato 5, I-40126 Bologna, Italy
b INFN, Sez. di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
c Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Via Panisperna 89A, I-00184, Roma, Italy
Full-text PDF (453 kB) Citations (2)
References:
Abstract: We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures $(3,1)$, $(2,2)$, $(4,0)$, constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature $(2,2)$. The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the $\mathcal{N}=1$ supersetting.
Keywords: quantum groups; supersymmetry.
Received: February 23, 2018; in final form June 15, 2018; Published online June 28, 2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Rita Fioresi, Emanuele Latini, Alessio Marrani, “Quantum Klein Space and Superspace”, SIGMA, 14 (2018), 066, 20 pp.
Citation in format AMSBIB
\Bibitem{FioLatMar18}
\by Rita~Fioresi, Emanuele~Latini, Alessio~Marrani
\paper Quantum Klein Space and Superspace
\jour SIGMA
\yr 2018
\vol 14
\papernumber 066
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1365}
\crossref{https://doi.org/10.3842/SIGMA.2018.066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436448800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050340890}
Linking options:
  • https://www.mathnet.ru/eng/sigma1365
  • https://www.mathnet.ru/eng/sigma/v14/p66
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :44
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024