Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 051, 26 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.051
(Mi sigma1350)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials

Daniel D. Tcheutiaa, Alta S. Joosteb, Wolfram Koepfa

a Institute of Mathematics, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel, Germany
b Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
Full-text PDF (493 kB) Citations (2)
References:
Abstract: We show how to obtain linear combinations of polynomials in an orthogonal sequence $\{P_n\}_{n\geq 0}$, such as $Q_{n,k}(x)=\sum\limits_{i=0}^k a_{n,i}P_{n-i}(x)$, $a_{n,0}a_{n,k}\neq0$, that characterize quasi-orthogonal polynomials of order $k\le n-1$. The polynomials in the sequence $\{Q_{n,k}\}_{n\geq 0}$ are obtained from $P_{n}$, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable and these equations are used to prove quasi-orthogonality of order $k$. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the end points of the interval of orthogonality of the sequence $\{P_n\}_{n\geq 0}$, where possible.
Keywords: classical orthogonal polynomials; quasi-orthogonal polynomials; interlacing of zeros.
Funding agency
This work has been supported by the Institute of Mathematics of the University of Kassel (Germany) for D.D. Tcheutia.
Received: January 26, 2018; in final form May 17, 2018; Published online May 23, 2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Daniel D. Tcheutia, Alta S. Jooste, Wolfram Koepf, “Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials”, SIGMA, 14 (2018), 051, 26 pp.
Citation in format AMSBIB
\Bibitem{TchJooKoe18}
\by Daniel~D.~Tcheutia, Alta~S.~Jooste, Wolfram~Koepf
\paper Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials
\jour SIGMA
\yr 2018
\vol 14
\papernumber 051
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma1350}
\crossref{https://doi.org/10.3842/SIGMA.2018.051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432727000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048472775}
Linking options:
  • https://www.mathnet.ru/eng/sigma1350
  • https://www.mathnet.ru/eng/sigma/v14/p51
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :45
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024