Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 014, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.014
(Mi sigma1313)
 

This article is cited in 2 scientific papers (total in 2 papers)

Categorical Tori

Nora Ganter

School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
Full-text PDF (498 kB) Citations (2)
References:
Abstract: We give explicit and elementary constructions of the categorical extensions of a torus by the circle and discuss an application to loop group extensions. Examples include maximal tori of simple and simply connected compact Lie groups and the tori associated to the Leech and Niemeyer lattices. We obtain the extraspecial 2-groups as the isomorphism classes of categorical fixed points under an involution action.
Keywords: categorification; Lie group cohomology.
Funding agency Grant number
Australian Research Council DP109581
The author was supported by an Australian Research Fellowship and by ARC grant DP109581.
Received: September 23, 2017; in final form January 31, 2018; Published online February 17, 2018
Bibliographic databases:
Document Type: Article
MSC: 22E99; 18D99
Language: English
Citation: Nora Ganter, “Categorical Tori”, SIGMA, 14 (2018), 014, 18 pp.
Citation in format AMSBIB
\Bibitem{Gan18}
\by Nora~Ganter
\paper Categorical Tori
\jour SIGMA
\yr 2018
\vol 14
\papernumber 014
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1313}
\crossref{https://doi.org/10.3842/SIGMA.2018.014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425365300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045059734}
Linking options:
  • https://www.mathnet.ru/eng/sigma1313
  • https://www.mathnet.ru/eng/sigma/v14/p14
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :92
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024