Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 010, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.010
(Mi sigma1309)
 

This article is cited in 4 scientific papers (total in 4 papers)

Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures

Taiji Marugame

Institute of Mathematics, Academia Sinica, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
Full-text PDF (313 kB) Citations (4)
References:
Abstract: We prove that the total CR $Q$-curvature vanishes for any compact strictly pseudoconvex CR manifold. We also prove the formal self-adjointness of the $P^\prime$-operator and the CR invariance of the total $Q^\prime$-curvature for any pseudo-Einstein manifold without the assumption that it bounds a Stein manifold.
Keywords: CR manifolds; $Q$-curvature; $P^\prime$-operator; $Q^\prime$-curvature.
Received: November 9, 2017; in final form February 12, 2018; Published online February 14, 2018
Bibliographic databases:
Document Type: Article
MSC: 32V05; 52T15
Language: English
Citation: Taiji Marugame, “Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures”, SIGMA, 14 (2018), 010, 8 pp.
Citation in format AMSBIB
\Bibitem{Mar18}
\by Taiji~Marugame
\paper Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures
\jour SIGMA
\yr 2018
\vol 14
\papernumber 010
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma1309}
\crossref{https://doi.org/10.3842/SIGMA.2018.010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425363700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045064378}
Linking options:
  • https://www.mathnet.ru/eng/sigma1309
  • https://www.mathnet.ru/eng/sigma/v14/p10
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :35
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024