|
This article is cited in 2 scientific papers (total in 2 papers)
Alvis–Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
Olivier Dudasa, Nicolas Jaconb a Université Paris Diderot, UFR de Mathématiques, Bâtiment Sophie Germain, 5 rue Thomas Mann, 75205 Paris CEDEX 13, France
b Université de Reims Champagne-Ardenne, UFR Sciences exactes et naturelles, Laboratoire de Mathématiques EA 4535, Moulin de la Housse BP 1039, 51100 Reims, France
Abstract:
We study the effect of Alvis–Curtis duality on the unipotent representations of $\mathrm{GL}_n(q)$ in non-defining characteristic $\ell$. We show that the permutation induced on the simple modules can be expressed in terms of a generalization of the Mullineux involution on the set of all partitions, which involves both $\ell$ and the order of $q$ modulo $\ell$.
Keywords:
Mullineux involution; Alvis–Curtis duality; crystal graph; Harish-Chandra theory.
Received: June 17, 2017; in final form January 22, 2018; Published online January 30, 2018
Citation:
Olivier Dudas, Nicolas Jacon, “Alvis–Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution”, SIGMA, 14 (2018), 007, 18 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1306 https://www.mathnet.ru/eng/sigma/v14/p7
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 43 | References: | 35 |
|