Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 004, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.004
(Mi sigma1303)
 

This article is cited in 2 scientific papers (total in 2 papers)

Reconstructing a Lattice Equation: a Non-Autonomous Approach to the Hietarinta Equation

Giorgio Gubbiottiabc, Christian Scimiternaca

a Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre
b School of Mathematics and Statistics, F07, The University of Sydney, New South Wales 2006, Australia
c Sezione INFN di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
Full-text PDF (486 kB) Citations (2)
References:
Abstract: In this paper we construct a non-autonomous version of the Hietarinta equation [Hietarinta J., J. Phys. A: Math. Gen. 37 (2004), L67–L73] and study its integrability properties. We show that this equation possess linear growth of the degrees of iterates, generalized symmetries depending on arbitrary functions, and that it is Darboux integrable. We use the first integrals to provide a general solution of this equation. In particular we show that this equation is a sub-case of the non-autonomous $Q_{\rm V}$ equation, and we provide a non-autonomous Möbius transformation to another equation found in [Hietarinta J., J. Nonlinear Math. Phys. 12 (2005), suppl. 2, 223–230] and appearing also in Boll's classification [Boll R., Ph.D. Thesis, Technische Universität Berlin, 2012].
Keywords: quad-equations; Darboux integrability; algebraic entropy; generalized symmetries; exact solutions.
Funding agency Grant number
Instituto Nazionale di Fisica Nucleare IS-CSN4
Australian Research Council FL120100094
GG is supported by INFN IS-CSN4 Mathematical Methods of Nonlinear Physics and by the Australian Research Council through an Australian Laureate Fellowship grant FL120100094.
Received: April 30, 2017; in final form December 15, 2017; Published online January 9, 2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Giorgio Gubbiotti, Christian Scimiterna, “Reconstructing a Lattice Equation: a Non-Autonomous Approach to the Hietarinta Equation”, SIGMA, 14 (2018), 004, 21 pp.
Citation in format AMSBIB
\Bibitem{GubSci18}
\by Giorgio~Gubbiotti, Christian~Scimiterna
\paper Reconstructing a Lattice Equation: a Non-Autonomous Approach to the Hietarinta Equation
\jour SIGMA
\yr 2018
\vol 14
\papernumber 004
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1303}
\crossref{https://doi.org/10.3842/SIGMA.2018.004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422869500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042006795}
Linking options:
  • https://www.mathnet.ru/eng/sigma1303
  • https://www.mathnet.ru/eng/sigma/v14/p4
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025