Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 003, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.003
(Mi sigma1302)
 

This article is cited in 2 scientific papers (total in 2 papers)

Manifold Ways to Darboux–Halphen System

John Alexander Cruz Moralesa, Hossein Movasatib, Younes Nikdelanc, Raij Roychowdhuryd, Marcus A. C. Torresb

a Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
b Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brazil
c Instituto de Matemática e Estatística (IME), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
d Instituto de Física, Universidade de São Paulo (IF-USP), São Paulo, Brazil
Full-text PDF (376 kB) Citations (2)
References:
Abstract: Many distinct problems give birth to Darboux–Halphen system of differential equations and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding infinite number of double orthogonal surfaces in $\mathbb{R}^3$. The second is a problem in general relativity about gravitational instanton in Bianchi IX metric space. The third problem stems from the new take on the moduli of enhanced elliptic curves called Gauss–Manin connection in disguise developed by one of the authors and finally in the last problem Darboux–Halphen system emerges from the associative algebra on the tangent space of a Frobenius manifold.
Keywords: Darboux–Halphen system; Ramanujan system; Gauss–Manin connection; relativity and gravitational theory; Bianchi IX metric; Frobenius manifold; Chazy equation.
Funding agency Grant number
National Council for Scientific and Technological Development (CNPq) 2013/17765-0
Fundação de Amparo à Pesquisa do Estado de São Paulo 2013/17765-0
During the period of preparation of the manuscript MACT was fully sponsored by CNpQ-Brasil. The research of RR was supported by FAPESP through Instituto de Fisica, Universidade de Sao Paulo with grant number 2013/17765-0.
Received: September 29, 2017; in final form January 3, 2018; Published online January 8, 2018
Bibliographic databases:
Document Type: Article
MSC: 34M55; 53D45; 83C05
Language: English
Citation: John Alexander Cruz Morales, Hossein Movasati, Younes Nikdelan, Raij Roychowdhury, Marcus A. C. Torres, “Manifold Ways to Darboux–Halphen System”, SIGMA, 14 (2018), 003, 14 pp.
Citation in format AMSBIB
\Bibitem{MorMovNik18}
\by John~Alexander~Cruz~Morales, Hossein~Movasati, Younes~Nikdelan, Raij~Roychowdhury, Marcus~A.~C.~Torres
\paper Manifold Ways to Darboux--Halphen System
\jour SIGMA
\yr 2018
\vol 14
\papernumber 003
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1302}
\crossref{https://doi.org/10.3842/SIGMA.2018.003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422869200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042007677}
Linking options:
  • https://www.mathnet.ru/eng/sigma1302
  • https://www.mathnet.ru/eng/sigma/v14/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025