Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 090, 49 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.090
(Mi sigma1290)
 

This article is cited in 2 scientific papers (total in 2 papers)

Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle

Adhemar Bultheela, Ruyman Cruz-Barrosob, Andreas Lasarowc

a Department of Computer Science, KU Leuven, Belgium
b Department of Mathematical Analysis, La Laguna University, Tenerife, Spain
c Fak. Informatik, Mathematik & Naturwissenschaften, HTWK Leipzig, Germany
Full-text PDF (689 kB) Citations (2)
References:
Abstract: Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.
Keywords: orthogonal rational functions; rational Szegő quadrature; spectral method; rational Krylov method; AMPD matrix.
Received: August 1, 2017; in final form November 20, 2017; Published online December 3, 2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Adhemar Bultheel, Ruyman Cruz-Barroso, Andreas Lasarow, “Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle”, SIGMA, 13 (2017), 090, 49 pp.
Citation in format AMSBIB
\Bibitem{BulCruLas17}
\by Adhemar~Bultheel, Ruyman~Cruz-Barroso, Andreas~Lasarow
\paper Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
\jour SIGMA
\yr 2017
\vol 13
\papernumber 090
\totalpages 49
\mathnet{http://mi.mathnet.ru/sigma1290}
\crossref{https://doi.org/10.3842/SIGMA.2017.090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000417336300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039060895}
Linking options:
  • https://www.mathnet.ru/eng/sigma1290
  • https://www.mathnet.ru/eng/sigma/v13/p90
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :31
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024