Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 048, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.048
(Mi sigma1248)
 

This article is cited in 2 scientific papers (total in 2 papers)

Equivariant Gromov–Witten Invariants of Algebraic GKM Manifolds

Chiu-Chu Melissa Liua, Artan Sheshmanibc

a Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
b Aarhus University, Department of Mathematics, QGM, Ny Munkegade 118, 8000 Aarhus, Denmark
c Harvard University, Department of Mathematics (CMSA), 20 Garden Street, Cambridge, MA, 02138, USA
Full-text PDF (462 kB) Citations (2)
References:
Abstract: An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov–Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
Keywords: Gromov–Witten theory; GKM manifold; moduli space; equivariant cohomology; localization.
Funding agency Grant number
National Science Foundation DMS-1206667
DMS-1159416
This work is partially supported by NSF DMS-1159416 and NSF DMS-1206667.
Received: January 16, 2017; in final form June 21, 2017; Published online July 1, 2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Chiu-Chu Melissa Liu, Artan Sheshmani, “Equivariant Gromov–Witten Invariants of Algebraic GKM Manifolds”, SIGMA, 13 (2017), 048, 21 pp.
Citation in format AMSBIB
\Bibitem{LiuShe17}
\by Chiu-Chu~Melissa~Liu, Artan~Sheshmani
\paper Equivariant Gromov--Witten Invariants of Algebraic GKM Manifolds
\jour SIGMA
\yr 2017
\vol 13
\papernumber 048
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1248}
\crossref{https://doi.org/10.3842/SIGMA.2017.048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405003400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85022030999}
Linking options:
  • https://www.mathnet.ru/eng/sigma1248
  • https://www.mathnet.ru/eng/sigma/v13/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :32
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024