|
This article is cited in 6 scientific papers (total in 6 papers)
Check-Operators and Quantum Spectral Curves
Andrei Mironovabcd, Alexei Morozovdbc a Lebedev Physics Institute, Moscow, 119991, Russia
b ITEP, Moscow, 117218, Russia
c Institute for Information Transmission Problems, Moscow, 127994, Russia
d National Research Nuclear University MEPhI, Moscow, 115409, Russia
Abstract:
We review the basic properties of effective actions of families of theories (i.e., the actions depending on additional non-perturbative moduli along with perturbative couplings), and their description in terms of operators (called check-operators), which act on the moduli space. It is this approach that led to constructing the (quantum) spectral curves and what is now nicknamed the EO/AMM topological recursion. We explain how the non-commutative algebra of check-operators is related to the modular kernels and how symplectic (special) geometry emerges from it in the classical (Seiberg–Witten) limit, where the quantum integrable structures turn into the well studied classical integrability. As time goes, these results turn applicable to more and more theories of physical importance, supporting the old idea that many universality classes of low-energy effective theories contain matrix model representatives.
Keywords:
matrix models; check-operators; Seiberg–Witten theory; modular kernel in CFT.
Received: January 29, 2017; in final form June 19, 2017; Published online June 26, 2017
Citation:
Andrei Mironov, Alexei Morozov, “Check-Operators and Quantum Spectral Curves”, SIGMA, 13 (2017), 047, 17 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1247 https://www.mathnet.ru/eng/sigma/v13/p47
|
Statistics & downloads: |
Abstract page: | 396 | Full-text PDF : | 42 | References: | 36 |
|