Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 038, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.038
(Mi sigma1238)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential

Eugene D. Belokolos

Department of Theoretical Physics, Institute of Magnetism, National Academy of Sciences of Ukraine, 36-b Vernadsky Blvd., Kyiv, 252142, Ukraine
Full-text PDF (363 kB) Citations (2)
References:
Abstract: We prove that a neutral atom in mean-field approximation has ${\rm O}(4)$ symmetry and this fact explains the empirical $[n+l,n]$-rule or Madelung rule which describes effectively periods, structure and other properties of the Mendeleev table of chemical elements.
Keywords: Madelung rule; Mendeleev periodic system of elements; Tietz potential.
Received: February 27, 2017; in final form May 22, 2017; Published online June 7, 2017
Bibliographic databases:
Document Type: Article
MSC: 81Q05; 81V45
Language: English
Citation: Eugene D. Belokolos, “Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential”, SIGMA, 13 (2017), 038, 15 pp.
Citation in format AMSBIB
\Bibitem{Bel17}
\by Eugene~D.~Belokolos
\paper Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential
\jour SIGMA
\yr 2017
\vol 13
\papernumber 038
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1238}
\crossref{https://doi.org/10.3842/SIGMA.2017.038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000402709300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020458780}
Linking options:
  • https://www.mathnet.ru/eng/sigma1238
  • https://www.mathnet.ru/eng/sigma/v13/p38
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024