Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 095, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.095
(Mi sigma123)
 

This article is cited in 18 scientific papers (total in 18 papers)

Bethe Ansatz Solutions of the Bose–Hubbard Dimer

Jon Links, Katrina E. Hibberd

Centre for Mathematical Physics, School of Physical Sciences, The University of Queensland, 4072, Australia
References:
Abstract: The Bose–Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose–Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V. B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the $su(2)$ Lie algebra.
Keywords: Bose–Hubbard dimer; Bethe ansatz.
Received: October 26, 2006; in final form December 19, 2006; Published online December 29, 2006
Bibliographic databases:
Document Type: Article
MSC: 81R12; 17B80; 81V99
Language: English
Citation: Jon Links, Katrina E. Hibberd, “Bethe Ansatz Solutions of the Bose–Hubbard Dimer”, SIGMA, 2 (2006), 095, 8 pp.
Citation in format AMSBIB
\Bibitem{LinHib06}
\by Jon Links, Katrina E.~Hibberd
\paper Bethe Ansatz Solutions of the Bose--Hubbard Dimer
\jour SIGMA
\yr 2006
\vol 2
\papernumber 095
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma123}
\crossref{https://doi.org/10.3842/SIGMA.2006.095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280323}
\zmath{https://zbmath.org/?q=an:1133.81031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236340}
Linking options:
  • https://www.mathnet.ru/eng/sigma123
  • https://www.mathnet.ru/eng/sigma/v2/p95
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:397
    Full-text PDF :95
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024