Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 026, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.026
(Mi sigma1226)
 

This article is cited in 7 scientific papers (total in 7 papers)

Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$

Jean-Louis Clerc

Institut Elie Cartan de Lorraine, Université de Lorraine, France
Full-text PDF (416 kB) Citations (7)
References:
Abstract: A family $({\mathbf D}_\lambda)_{\lambda\in \mathbb C}$ of differential operators on the sphere $S^n$ is constructed. The operators are conformally covariant for the action of the subgroup of conformal transformations of $S^n$ which preserve the smaller sphere $S^{n-1}\subset S^n$. The family of conformally covariant differential operators from $S^n$ to $S^{n-1}$ introduced by A. Juhl is obtained by composing these operators on $S^n$ and taking restrictions to $S^{n-1}$.
Keywords: conformally covariant differential operators; Juhl's covariant differential operators.
Received: December 7, 2016; in final form April 11, 2017; Published online April 19, 2017
Bibliographic databases:
Document Type: Article
MSC: 58J70; 43A85
Language: English
Citation: Jean-Louis Clerc, “Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$”, SIGMA, 13 (2017), 026, 18 pp.
Citation in format AMSBIB
\Bibitem{Cle17}
\by Jean-Louis~Clerc
\paper Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
\jour SIGMA
\yr 2017
\vol 13
\papernumber 026
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1226}
\crossref{https://doi.org/10.3842/SIGMA.2017.026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000399767200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019608588}
Linking options:
  • https://www.mathnet.ru/eng/sigma1226
  • https://www.mathnet.ru/eng/sigma/v13/p26
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :33
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024