Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 018, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.018
(Mi sigma1218)
 

This article is cited in 8 scientific papers (total in 8 papers)

Ermakov–Painlevé II Symmetry Reduction of a Korteweg Capillarity System

Colin Rogersab, Peter A. Clarksonc

a Australian Research Council Centre of Excellence for Mathematics & Statistics of Complex Systems
b School of Mathematics, The University of New South Wales, Sydney, NSW2052, Australia
c School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, CT2 7FS, UK
Full-text PDF (439 kB) Citations (8)
References:
Abstract: A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie–Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov–Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov–Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii–Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion.
Keywords: Ermakov–Painlevé II equation; Painlevé capillarity; Korteweg-type capillary system; Bäcklund transformation.
Received: January 13, 2017; in final form March 15, 2017; Published online March 22, 2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Colin Rogers, Peter A. Clarkson, “Ermakov–Painlevé II Symmetry Reduction of a Korteweg Capillarity System”, SIGMA, 13 (2017), 018, 20 pp.
Citation in format AMSBIB
\Bibitem{RogCla17}
\by Colin~Rogers, Peter~A.~Clarkson
\paper Ermakov--Painlev\'{e}~II Symmetry Reduction of a Korteweg Capillarity System
\jour SIGMA
\yr 2017
\vol 13
\papernumber 018
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1218}
\crossref{https://doi.org/10.3842/SIGMA.2017.018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000399290100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016604463}
Linking options:
  • https://www.mathnet.ru/eng/sigma1218
  • https://www.mathnet.ru/eng/sigma/v13/p18
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :44
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024