Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 015, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.015
(Mi sigma1215)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry

Jan Fuksaab

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
b Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic
Full-text PDF (421 kB) Citations (3)
References:
Abstract: Supersymmetric composite generalized quantum integrable models solvable by the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the composite models with supersymmetry based on the super-Yangians $Y[\mathfrak{gl}(2|1)]$ and $Y[\mathfrak{gl}(1|2)]$ are derived.
Keywords: algebraic Bethe ansatz; composite models.
Funding agency Grant number
Czech Technical University in Prague SGS15/215/OHK4/3T/14
Received: November 18, 2016; in final form March 3, 2017; Published online March 13, 2017
Bibliographic databases:
Document Type: Article
MSC: 17B37; 81R50; 82B23
Language: English
Citation: Jan Fuksa, “Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry”, SIGMA, 13 (2017), 015, 17 pp.
Citation in format AMSBIB
\Bibitem{Fuk17}
\by Jan~Fuksa
\paper Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry
\jour SIGMA
\yr 2017
\vol 13
\papernumber 015
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1215}
\crossref{https://doi.org/10.3842/SIGMA.2017.015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396322300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016076725}
Linking options:
  • https://www.mathnet.ru/eng/sigma1215
  • https://www.mathnet.ru/eng/sigma/v13/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :39
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024