Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 009, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.009
(Mi sigma1209)
 

This article is cited in 2 scientific papers (total in 2 papers)

$q$-Difference Kac–Schwarz Operators in Topological String Theory

Kanehisa Takasakia, Toshio Nakatsub

a Department of Mathematics, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
b Institute of Fundamental Sciences, Setsunan University, 17-8 Ikeda Nakamachi, Neyagawa, Osaka 572-8508, Japan
Full-text PDF (547 kB) Citations (2)
References:
Abstract: The perspective of Kac–Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector $|W\rangle$ in the fermionic Fock space that represents a point $W$ of the Sato Grassmannian. $|W\rangle$ is generated from the vacuum vector $|0\rangle$ by an operator $g$ on the Fock space. $g$ determines an operator $G$ on the space $V = \mathbb{C}((x))$ of Laurent series in which $W$ is realized as a linear subspace. $G$ generates an admissible basis $\{\Phi_j(x)\}_{j=0}^\infty$ of $W$. $q$-difference analogues $A$$B$ of Kac–Schwarz operators are defined with the aid of $G$. $\Phi_j(x)$'s satisfy the linear equations $A\Phi_j(x) = q^j\Phi_j(x)$, $B\Phi_j(x) = \Phi_{j+1}(x)$. The lowest equation $A\Phi_0(x) = \Phi_0(x)$ reproduces the quantum mirror curve in the authors' previous work.
Keywords: topological vertex; mirror symmetry; quantum curve; $q$-difference equation; KP hierarchy; Kac–Schwarz operator.
Funding agency Grant number
Japan Society for the Promotion of Science Kakenhi Grant No. 25400111
Kakenhi Grant No. 15K04912
This work is partly supported by JSPS Kakenhi Grant No. 25400111 and No. 15K04912.
Received: September 8, 2016; in final form February 17, 2017; Published online February 21, 2017
Bibliographic databases:
Document Type: Article
MSC: 37K10; 39A13; 81T30
Language: English
Citation: Kanehisa Takasaki, Toshio Nakatsu, “$q$-Difference Kac–Schwarz Operators in Topological String Theory”, SIGMA, 13 (2017), 009, 28 pp.
Citation in format AMSBIB
\Bibitem{TakNak17}
\by Kanehisa~Takasaki, Toshio~Nakatsu
\paper $q$-Difference Kac--Schwarz Operators in Topological String Theory
\jour SIGMA
\yr 2017
\vol 13
\papernumber 009
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma1209}
\crossref{https://doi.org/10.3842/SIGMA.2017.009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396321700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014869531}
Linking options:
  • https://www.mathnet.ru/eng/sigma1209
  • https://www.mathnet.ru/eng/sigma/v13/p9
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :29
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024