Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 106, 30 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.106
(Mi sigma1188)
 

This article is cited in 6 scientific papers (total in 6 papers)

Polarisation of Graded Bundles

Andrew James Brucea, Janusz Grabowskia, Mikołaj Rotkiewiczb

a Institute of Mathematics, Polish Academy of Sciences, Poland
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
Full-text PDF (593 kB) Citations (6)
References:
Abstract: We construct the full linearisation functor which takes a graded bundle of degree $k$ (a particular kind of graded manifold) and produces a $k$-fold vector bundle. We fully characterise the image of the full linearisation functor and show that we obtain a subcategory of $k$-fold vector bundles consisting of symmetric $k$-fold vector bundles equipped with a family of morphisms indexed by the symmetric group ${\mathbb S}_k$. Interestingly, for the degree 2 case this additional structure gives rise to the notion of a symplectical double vector bundle, which is the skew-symmetric analogue of a metric double vector bundle. We also discuss the related case of fully linearising $N$-manifolds, and how one can use the full linearisation functor to “superise” a graded bundle.
Keywords: graded manifolds; $N$-manifolds; $k$-fold vector bundles; polarisation; supermanifolds.
Funding agency Grant number
National Science Centre (Narodowe Centrum Nauki) DEC-2012/06/A/ST1/00256
Research funded by the Polish National Science Centre grant under the contract number DEC-2012/06/A/ST1/00256.
Received: December 14, 2015; in final form October 25, 2016; Published online November 2, 2016
Bibliographic databases:
Document Type: Article
MSC: 55R10; 58A32; 58A50
Language: English
Citation: Andrew James Bruce, Janusz Grabowski, Mikołaj Rotkiewicz, “Polarisation of Graded Bundles”, SIGMA, 12 (2016), 106, 30 pp.
Citation in format AMSBIB
\Bibitem{BruGraRot16}
\by Andrew~James~Bruce, Janusz~Grabowski, Miko\l aj~Rotkiewicz
\paper Polarisation of Graded Bundles
\jour SIGMA
\yr 2016
\vol 12
\papernumber 106
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma1188}
\crossref{https://doi.org/10.3842/SIGMA.2016.106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000388502400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996488626}
Linking options:
  • https://www.mathnet.ru/eng/sigma1188
  • https://www.mathnet.ru/eng/sigma/v12/p106
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :35
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024