Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 099, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.099
(Mi sigma1181)
 

This article is cited in 14 scientific papers (total in 14 papers)

Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models

Arthur Hutsalyuka, Andrii Liashykbc, Stanislav Z. Pakuliakad, Eric Ragoucye, Nikita A. Slavnovf

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
b Bogoliubov Institute for Theoretical Physics, NAS of Ukraine, Kyiv, Ukraine
c National Research University Higher School of Economics, Russia
d Laboratory of Theoretical Physics, JINR, Dubna, Moscow region, Russia
e Laboratoire de Physique Théorique LAPTh, CNRS and USMB, Annecy-le-Vieux, France
f Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We study $\mathfrak{gl}(2|1)$ symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors. The obtained formulas open a way for studying scalar products of Bethe vectors.
Keywords: algebraic Bethe ansatz; superalgebras; scalar product of Bethe vectors.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
National Academy of Sciences of Ukraine F14-2016
Russian Foundation for Basic Research 16-01-00562_a
15-31-20484_mol_a_ved
14-01-00860_a
The work of A.L. has been funded by the Russian Academic Excellence Project 5-100 and by joint NASU-CNRS project F14-2016. The work of S.P. was supported in part by the RFBR grant 16-01-00562-a. N.A.S. was supported by the grants RFBR-15-31-20484-mol-a-ved and RFBR-14-01-00860-a.
Received: June 24, 2016; in final form October 3, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp.
Citation in format AMSBIB
\Bibitem{HusLiaPak16}
\by Arthur~Hutsalyuk, Andrii~Liashyk, Stanislav~Z.~Pakuliak, Eric~Ragoucy, Nikita~A.~Slavnov
\paper Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models
\jour SIGMA
\yr 2016
\vol 12
\papernumber 099
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1181}
\crossref{https://doi.org/10.3842/SIGMA.2016.099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555324}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385017800001}
\elib{https://elibrary.ru/item.asp?id=27581219}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996536333}
Linking options:
  • https://www.mathnet.ru/eng/sigma1181
  • https://www.mathnet.ru/eng/sigma/v12/p99
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :44
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024