Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 096, 39 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.096
(Mi sigma1178)
 

This article is cited in 4 scientific papers (total in 4 papers)

On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings

Adam Nowaka, Krzysztof Stempakb, Tomasz Z. Szareka

a Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00–656 Warszawa, Poland
b Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
Full-text PDF (662 kB) Citations (4)
References:
Abstract: We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to $\mathbb{Z}_2^d$. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, $g$-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace–Stieltjes type. By means of the general Calderón–Zygmund theory we prove that these operators are bounded on weighted $L^p$ spaces, $1 < p < \infty$, and from weighted $L^1$ to weighted weak $L^1$. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
Keywords: Dunkl harmonic oscillator; generalized Hermite functions; negative multiplicity function; Laguerre expansions of convolution type; Bessel harmonic oscillator; Laguerre–Dunkl expansions; Laguerre-symmetrized expansions; heat semigroup; Poisson semigroup; maximal operator; Riesz transform; $g$-function; spectral multiplier; area integral; Calderón–Zygmund operator.
Funding agency Grant number
National Science Centre (Narodowe Centrum Nauki) 2013/09/B/ST1/02057
2012/05/N/ST1/02746
Research of the first-named and the second-named authors was supported by the National Science Centre of Poland, project no. 2013/09/B/ST1/02057. The third-named author was partially supported by the National Science Centre of Poland, project no. 2012/05/N/ST1/02746.
Received: May 25, 2016; in final form September 23, 2016; Published online September 29, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Adam Nowak, Krzysztof Stempak, Tomasz Z. Szarek, “On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings”, SIGMA, 12 (2016), 096, 39 pp.
Citation in format AMSBIB
\Bibitem{NowSteSza16}
\by Adam~Nowak, Krzysztof~Stempak, Tomasz~Z.~Szarek
\paper On Harmonic Analysis Operators in Laguerre--Dunkl and~Laguerre-Symmetrized Settings
\jour SIGMA
\yr 2016
\vol 12
\papernumber 096
\totalpages 39
\mathnet{http://mi.mathnet.ru/sigma1178}
\crossref{https://doi.org/10.3842/SIGMA.2016.096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385017300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996503881}
Linking options:
  • https://www.mathnet.ru/eng/sigma1178
  • https://www.mathnet.ru/eng/sigma/v12/p96
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:566
    Full-text PDF :43
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024