Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 095, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.095
(Mi sigma1177)
 

This article is cited in 11 scientific papers (total in 11 papers)

A Riemann–Hilbert Approach for the Novikov Equation

Anne Boutet de Monvela, Dmitry Shepelskyb, Lech Zielinskic

a Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot, 75205 Paris Cedex 13, France
b Mathematical Division, Institute for Low Temperature Physics, 47 Nauki Avenue, 61103 Kharkiv, Ukraine
c LMPA, Université du Littoral Côte d’Opale, 50 rue F. Buisson, CS 80699, 62228 Calais, France
References:
Abstract: We develop the inverse scattering transform method for the Novikov equation $u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx}$ considered on the line $x\in(-\infty,\infty)$ in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann–Hilbert (RH) problem, which in this case is a $3\times 3$ matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis–Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081–2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a “modified DP equation”, in analogy with the relationship between the Korteweg–de Vries (KdV) equation and the modified Korteweg–de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
Keywords: Novikov equation; Degasperis–Procesi equation; Camassa–Holm equation; inverse scattering transform; Riemann–Hilbert problem.
Received: June 8, 2016; in final form September 14, 2016; Published online September 24, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anne Boutet de Monvel, Dmitry Shepelsky, Lech Zielinski, “A Riemann–Hilbert Approach for the Novikov Equation”, SIGMA, 12 (2016), 095, 22 pp.
Citation in format AMSBIB
\Bibitem{BouSheZie16}
\by Anne~Boutet de Monvel, Dmitry~Shepelsky, Lech~Zielinski
\paper A Riemann--Hilbert Approach for the Novikov Equation
\jour SIGMA
\yr 2016
\vol 12
\papernumber 095
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1177}
\crossref{https://doi.org/10.3842/SIGMA.2016.095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385017200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996587421}
Linking options:
  • https://www.mathnet.ru/eng/sigma1177
  • https://www.mathnet.ru/eng/sigma/v12/p95
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :45
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024