Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 081, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.081
(Mi sigma1163)
 

This article is cited in 1 scientific paper (total in 1 paper)

Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator

Giovanni  Rastelli

Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italy
Full-text PDF (275 kB) Citations (1)
References:
Abstract: We apply the Born–Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born–Jordan formula, when producing different operators than the Weyl's one, does not.
Keywords: Born–Jordan quantization; Weyl quantization; superintegrable systems; extended systems.
Received: July 15, 2016; in final form August 15, 2016; Published online August 17, 2016
Bibliographic databases:
Document Type: Article
MSC: 81S05; 81R12; 70H06
Language: English
Citation: Giovanni Rastelli, “Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator”, SIGMA, 12 (2016), 081, 7 pp.
Citation in format AMSBIB
\Bibitem{Ras16}
\by Giovanni ~Rastelli
\paper Born--Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
\jour SIGMA
\yr 2016
\vol 12
\papernumber 081
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma1163}
\crossref{https://doi.org/10.3842/SIGMA.2016.081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383276200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84984819140}
Linking options:
  • https://www.mathnet.ru/eng/sigma1163
  • https://www.mathnet.ru/eng/sigma/v12/p81
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :30
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024