|
This article is cited in 3 scientific papers (total in 3 papers)
Solvable Nonlinear Evolution PDEs in Multidimensional Space
Francesco Calogeroa, Matteo Sommacalbc a Dipartimento di Fisica, Università di Roma "La Sapienza", Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
b Laboratoire J.-L. Lions, Université Pierre et Marie Curie, Paris VI, 175 Rue du Chevaleret, 75013 Paris, France
c Dipartimento di Matematica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy
Abstract:
A class of solvable (systems of) nonlinear evolution PDEs in multidimensional space is discussed. We
focus on a rotation-invariant system of PDEs of Schrödinger type and on a relativistically-invariant system of PDEs of Klein–Gordon type. Isochronous variants of these evolution PDEs are also considered.
Keywords:
nonlinear evolution PDEs in multidimensions; solvable PDEs; NLS-like equations; nonlinear Klein–Gordon-like equations; isochronicity.
Received: October 31, 2006; Published online December 8, 2006
Citation:
Francesco Calogero, Matteo Sommacal, “Solvable Nonlinear Evolution PDEs in Multidimensional Space”, SIGMA, 2 (2006), 088, 17 pp.
Linking options:
https://www.mathnet.ru/eng/sigma116 https://www.mathnet.ru/eng/sigma/v2/p88
|
Statistics & downloads: |
Abstract page: | 246 | Full-text PDF : | 54 | References: | 54 |
|