Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 072, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.072
(Mi sigma1154)
 

This article is cited in 2 scientific papers (total in 2 papers)

Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve

Thomas John Baird

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
Full-text PDF (397 kB) Citations (2)
References:
Abstract: We consider the moduli space of rank two, odd degree, semi-stable Real vector bundles over a real curve, calculating the singular cohomology ring in odd and zero characteristic for most examples.
Keywords: moduli space of vector bundles; gauge groups; real curves.
Received: October 30, 2015; in final form July 20, 2016; Published online July 22, 2016
Bibliographic databases:
Document Type: Article
MSC: 53D30; 55R10; 55T20
Language: English
Citation: Thomas John Baird, “Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve”, SIGMA, 12 (2016), 072, 18 pp.
Citation in format AMSBIB
\Bibitem{Bai16}
\by Thomas~John~Baird
\paper Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
\jour SIGMA
\yr 2016
\vol 12
\papernumber 072
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1154}
\crossref{https://doi.org/10.3842/SIGMA.2016.072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380758500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84984814941}
Linking options:
  • https://www.mathnet.ru/eng/sigma1154
  • https://www.mathnet.ru/eng/sigma/v12/p72
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :37
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024