Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 056, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.056
(Mi sigma1138)
 

This article is cited in 33 scientific papers (total in 33 papers)

The Multi-Orientable Random Tensor Model, a Review

Adrian Tanasaabc

a H. Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele, Romania
b Univ. Bordeaux, LaBRI, UMR 5800, 351 cours de la Libération, 33400 Talence, France
c IUF, 1 rue Descartes, 75231 Paris Cedex 05, France
References:
Abstract: After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the $1/N$ expansion and of the large $N$ limit ($N$ being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
Keywords: random tensor models; asymptotic expansions.
Funding agency Grant number
Agence Nationale de la Recherche JCJC CombPhysMat2Tens
Autoritatea Nationala pentru Cercetare Stiintifica si Inovare PN 09 37 01 02
The author is partially supported by the grants ANR JCJC CombPhysMat2Tens and PN 09 37 01 02.
Received: December 8, 2015; in final form June 10, 2016; Published online June 15, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Adrian Tanasa, “The Multi-Orientable Random Tensor Model, a Review”, SIGMA, 12 (2016), 056, 23 pp.
Citation in format AMSBIB
\Bibitem{Tan16}
\by Adrian~Tanasa
\paper The Multi-Orientable Random Tensor Model, a Review
\jour SIGMA
\yr 2016
\vol 12
\papernumber 056
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1138}
\crossref{https://doi.org/10.3842/SIGMA.2016.056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000379185600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975090502}
Linking options:
  • https://www.mathnet.ru/eng/sigma1138
  • https://www.mathnet.ru/eng/sigma/v12/p56
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :38
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024