Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 042, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.042
(Mi sigma1124)
 

This article is cited in 8 scientific papers (total in 8 papers)

Zeros of Quasi-Orthogonal Jacobi Polynomials

Kathy Driver, Kerstin Jordaan

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa
Full-text PDF (397 kB) Citations (8)
References:
Abstract: We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by $\alpha>-1$, $-2<\beta<-1$. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials $P_n^{(\alpha, \beta)}$ and $P_{n}^{(\alpha,\beta+2)}$ are interlacing, holds when the parameters $\alpha$ and $\beta$ are in the range $\alpha>-1$ and $-2<\beta<-1$. We prove that the zeros of $P_n^{(\alpha, \beta)}$ and $P_{n+1}^{(\alpha,\beta)}$ do not interlace for any $n\in\mathbb{N}$, $n\geq2$ and any fixed $\alpha$$\beta$ with $\alpha>-1$, $-2<\beta<-1$. The interlacing of zeros of $P_n^{(\alpha,\beta)}$ and $P_m^{(\alpha,\beta+t)}$ for $m,n\in\mathbb{N}$ is discussed for $\alpha$ and $\beta$ in this range, $t\geq 1$, and new upper and lower bounds are derived for the zero of $P_n^{(\alpha,\beta)}$ that is less than $-1$.
Keywords: interlacing of zeros; quasi-orthogonal Jacobi polynomials.
Received: October 30, 2015; in final form April 20, 2016; Published online April 27, 2016
Bibliographic databases:
Document Type: Article
MSC: 33C50; 42C05
Language: English
Citation: Kathy Driver, Kerstin Jordaan, “Zeros of Quasi-Orthogonal Jacobi Polynomials”, SIGMA, 12 (2016), 042, 13 pp.
Citation in format AMSBIB
\Bibitem{DriJor16}
\by Kathy~Driver, Kerstin~Jordaan
\paper Zeros of Quasi-Orthogonal Jacobi Polynomials
\jour SIGMA
\yr 2016
\vol 12
\papernumber 042
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma1124}
\crossref{https://doi.org/10.3842/SIGMA.2016.042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000375074800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84964887109}
Linking options:
  • https://www.mathnet.ru/eng/sigma1124
  • https://www.mathnet.ru/eng/sigma/v12/p42
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :30
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024