Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 034, 56 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.034
(Mi sigma1116)
 

This article is cited in 15 scientific papers (total in 15 papers)

Notes on Schubert, Grothendieck and Key Polynomials

Anatol N. Kirillovabc

a Research Institute for Mathematical Sciences, Kyoto University
b Department of Mathematics, National Research University Higher School of Economics, 7 Vavilova Str., 117312, Moscow, Russia
c The Kavli Institute for the Physics and Mathematics of the Universe (IPMU), 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
References:
Abstract: We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco–Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
Keywords: plactic monoid and reduced plactic algebras; nilCoxeter and idCoxeter algebras; Schubert, $\beta$-Grothendieck, key and (double) key-Grothendieck, and Di Francesco–Zinn-Justin polynomials; Cauchy's type kernels and symmetric, totally symmetric plane partitions, and alternating sign matrices; noncrossing Dyck paths and (rectangular) Schubert polynomials; double affine nilCoxeter algebras.
Received: March 26, 2015; in final form February 28, 2016; Published online March 29, 2016
Bibliographic databases:
Document Type: Article
MSC: 05E05; 05E10; 05A19
Language: English
Citation: Anatol N. Kirillov, “Notes on Schubert, Grothendieck and Key Polynomials”, SIGMA, 12 (2016), 034, 56 pp.
Citation in format AMSBIB
\Bibitem{Kir16}
\by Anatol~N.~Kirillov
\paper Notes on Schubert, Grothendieck and Key Polynomials
\jour SIGMA
\yr 2016
\vol 12
\papernumber 034
\totalpages 56
\mathnet{http://mi.mathnet.ru/sigma1116}
\crossref{https://doi.org/10.3842/SIGMA.2016.034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374457600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962090123}
Linking options:
  • https://www.mathnet.ru/eng/sigma1116
  • https://www.mathnet.ru/eng/sigma/v12/p34
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024