Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 031, 44 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.031
(Mi sigma1113)
 

This article is cited in 11 scientific papers (total in 11 papers)

Random Matrices with Merging Singularities and the Painlevé V Equation

Tom Claeys, Benjamin Fahs

Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium
References:
Abstract: We study the asymptotic behavior of the partition function and the correlation kernel in random matrix ensembles of the form $\frac{1}{Z_n} \big|\det \big( M^2-tI \big)\big|^{\alpha} e^{-n\mathrm{Tr}\, V(M)}dM$, where $M$ is an $n\times n$ Hermitian matrix, $\alpha>-1/2$ and $t\in\mathbb R$, in double scaling limits where $n\to\infty$ and simultaneously $t\to 0$. If $t$ is proportional to $1/n^2$, a transition takes place which can be described in terms of a family of solutions to the Painlevé V equation. These Painlevé solutions are in general transcendental functions, but for certain values of $\alpha$, they are algebraic, which leads to explicit asymptotics of the partition function and the correlation kernel.
Keywords: random matrices; Painlevé equations; Riemann–Hilbert problems.
Funding agency Grant number
European Union's Seventh Framework Programme 307074
Belgian Federal Science Policy P07/18
They were supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007/2013)/ERC Grant Agreement 307074 and by the Belgian Interuniversity Attraction Pole P07/18.
Received: September 8, 2015; in final form March 18, 2016; Published online March 23, 2016
Bibliographic databases:
Document Type: Article
MSC: 60B20; 35Q15; 33E17
Language: English
Citation: Tom Claeys, Benjamin Fahs, “Random Matrices with Merging Singularities and the Painlevé V Equation”, SIGMA, 12 (2016), 031, 44 pp.
Citation in format AMSBIB
\Bibitem{ClaFah16}
\by Tom~Claeys, Benjamin~Fahs
\paper Random Matrices with Merging Singularities and the Painlev\'e V Equation
\jour SIGMA
\yr 2016
\vol 12
\papernumber 031
\totalpages 44
\mathnet{http://mi.mathnet.ru/sigma1113}
\crossref{https://doi.org/10.3842/SIGMA.2016.031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374456900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961654597}
Linking options:
  • https://www.mathnet.ru/eng/sigma1113
  • https://www.mathnet.ru/eng/sigma/v12/p31
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :30
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024