Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 030, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.030
(Mi sigma1112)
 

This article is cited in 2 scientific papers (total in 2 papers)

Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs

Remi Cocou Avohou

International Chair in Mathematical Physics and Applications, ICMPA-UNESCO Chair, 072BP50, Cotonou, Republic of Benin
Full-text PDF (661 kB) Citations (2)
References:
Abstract: Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás–Riordan polynomials [Math. Ann. 323 (2002), 81–96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension $D\geq3$ a modified Euler characteristic with $D-2$ parameters. Using this modified invariant, we extend the rank $3$ weakly-colored graph polynomial, and its main properties, on rank $4$ and then on arbitrary rank $D$ weakly-colored stranded graphs.
Keywords: Tutte polynomial; Bollobás–Riordan polynomial; graph polynomial invariant; colored graph; Ribbon graph; Euler characteristic.
Received: June 26, 2015; in final form March 14, 2016; Published online March 22, 2016
Bibliographic databases:
Document Type: Article
MSC: 05C10; 57M15
Language: English
Citation: Remi Cocou Avohou, “Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs”, SIGMA, 12 (2016), 030, 23 pp.
Citation in format AMSBIB
\Bibitem{Avo16}
\by Remi~Cocou~Avohou
\paper Polynomial Invariants for Arbitrary Rank~$D$ Weakly-Colored Stranded Graphs
\jour SIGMA
\yr 2016
\vol 12
\papernumber 030
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1112}
\crossref{https://doi.org/10.3842/SIGMA.2016.030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374456200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961635271}
Linking options:
  • https://www.mathnet.ru/eng/sigma1112
  • https://www.mathnet.ru/eng/sigma/v12/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :37
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024