Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 083, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.083
(Mi sigma111)
 

This article is cited in 2 scientific papers (total in 2 papers)

Fermion on Curved Spaces, Symmetries, and Quantum Anomalies

Mihai Visinescu

Department of Theoretical Physics, Institute for Physics and Nuclear Engineering, Magurele, P.O.Box MG-6, Bucharest, Romania
Full-text PDF (265 kB) Citations (2)
References:
Abstract: We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing–Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing–Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub–Newman–Unti–Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge–Lenz vector of the Kepler-type problem. Using the Atiyah–Patodi–Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
Keywords: spinning particles; Dirac type operators; gravitational anomalies; axial anomalies.
Received: September 28, 2006; in final form November 21, 2006; Published online November 29, 2006
Bibliographic databases:
Document Type: Article
MSC: 83C47; 83C40; 83C20
Language: English
Citation: Mihai Visinescu, “Fermion on Curved Spaces, Symmetries, and Quantum Anomalies”, SIGMA, 2 (2006), 083, 16 pp.
Citation in format AMSBIB
\Bibitem{Vis06}
\by Mihai Visinescu
\paper Fermion on Curved Spaces, Symmetries, and Quantum Anomalies
\jour SIGMA
\yr 2006
\vol 2
\papernumber 083
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma111}
\crossref{https://doi.org/10.3842/SIGMA.2006.083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264899}
\zmath{https://zbmath.org/?q=an:05236992}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100082}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235923}
Linking options:
  • https://www.mathnet.ru/eng/sigma111
  • https://www.mathnet.ru/eng/sigma/v2/p83
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :46
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024