Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 015, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.015
(Mi sigma1097)
 

Non-Associative Geometry of Quantum Tori

Francesco D'Andreaab, Davide Francob

a Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso MSA, Via Cintia, 80126 Napoli, Italy
b I.N.F.N. Sezione di Napoli, Complesso MSA, Via Cintia, 80126 Napoli, Italy
References:
Abstract: We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a “principal bundle” construction, where the total space is a quasi-associative deformation of a $3$-dimensional Heisenberg manifold.
Keywords: noncommutative torus; quasi-Hopf algebras; cochain quantization.
Received: October 2, 2015; in final form February 4, 2016; Published online February 7, 2016
Bibliographic databases:
Document Type: Article
MSC: 58B34; 46L87; 53D55
Language: English
Citation: Francesco D'Andrea, Davide Franco, “Non-Associative Geometry of Quantum Tori”, SIGMA, 12 (2016), 015, 14 pp.
Citation in format AMSBIB
\Bibitem{DanFra16}
\by Francesco~D'Andrea, Davide~Franco
\paper Non-Associative Geometry of Quantum Tori
\jour SIGMA
\yr 2016
\vol 12
\papernumber 015
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1097}
\crossref{https://doi.org/10.3842/SIGMA.2016.015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371328700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957893292}
Linking options:
  • https://www.mathnet.ru/eng/sigma1097
  • https://www.mathnet.ru/eng/sigma/v12/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :40
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024