|
This article is cited in 61 scientific papers (total in 61 papers)
BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras
Giacomo Graziania, Abdenacer Makhloufb, Claudia Meninic, Florin Panaited a Université Joseph Fourier Grenoble I Institut Fourier, 100, Rue des Maths BP74 38402 Saint-Martin-d’Hères, France
b Université de Haute Alsace, Laboratoire de Mathématiques, Informatique et Applications, 4, Rue des frères Lumière, F-68093 Mulhouse, France
c University of Ferrara, Department of Mathematics, Via Machiavelli 30, Ferrara, I-44121, Italy
d Institute of Mathematics of the Romanian Academy,
PO-Box 1-764, RO-014700 Bucharest, Romania
Abstract:
A BiHom-associative algebra is a (nonassociative) algebra $A$ endowed with two commuting multiplicative linear maps $\alpha , \beta\colon A\rightarrow A$ such that $\alpha (a)(bc)=(ab)\beta (c)$, for all $a, b, c\in A$. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new structures by presenting some basic properties and constructions (representations, twisted tensor products, smash products etc).
Keywords:
BiHom-associative algebra; BiHom-Lie algebra; BiHom-bialgebra; representation; twisting; smash product.
Received: May 12, 2015; in final form October 13, 2015; Published online October 25, 2015
Citation:
Giacomo Graziani, Abdenacer Makhlouf, Claudia Menini, Florin Panaite, “BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras”, SIGMA, 11 (2015), 086, 34 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1067 https://www.mathnet.ru/eng/sigma/v11/p86
|
Statistics & downloads: |
Abstract page: | 255 | Full-text PDF : | 63 | References: | 33 |
|