Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 082, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.082
(Mi sigma1063)
 

This article is cited in 8 scientific papers (total in 8 papers)

Equivariant Join and Fusion of Noncommutative Algebras

Ludwik Dąbrowskia, Tom Hadfieldb, Piotr M. Hajacc

a SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy
b G-Research, Whittington House, 19-30 Alfred Place, London WC1E 7EA, UK
c Instytut Matematyczny, Polska Akademia Nauk, ul.Śniadeckich 8, 00-656 Warszawa, Poland
Full-text PDF (316 kB) Citations (8)
References:
Abstract: We translate the concept of the join of topological spaces to the language of $C^*$-algebras, replace the $C^*$-algebra of functions on the interval $[0,1]$ with evaluation maps at $0$ and $1$ by a unital $C^*$-algebra $C$ with appropriate two surjections, and introduce the notion of the fusion of unital $C^*$-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra $P$ with the coacting Hopf algebra $H$. We prove that, if the comodule algebra $P$ is principal, then so is the fusion comodule algebra. When $C=C([0,1])$ and the two surjections are evaluation maps at $0$ and $1$, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal $G$-bundle $X$, the diagonal action of $G$ on the join $X*G$ is free.
Keywords: $C^*$-algebras; Hopf algebras; free actions.
Received: June 30, 2015; in final form October 3, 2015; Published online October 13, 2015
Bibliographic databases:
Document Type: Article
MSC: 46L85; 58B32
Language: English
Citation: Ludwik Dąbrowski, Tom Hadfield, Piotr M. Hajac, “Equivariant Join and Fusion of Noncommutative Algebras”, SIGMA, 11 (2015), 082, 7 pp.
Citation in format AMSBIB
\Bibitem{DabHadHaj15}
\by Ludwik~D{\k a}browski, Tom~Hadfield, Piotr~M.~Hajac
\paper Equivariant Join and Fusion of Noncommutative Algebras
\jour SIGMA
\yr 2015
\vol 11
\papernumber 082
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma1063}
\crossref{https://doi.org/10.3842/SIGMA.2015.082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362577600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944317338}
Linking options:
  • https://www.mathnet.ru/eng/sigma1063
  • https://www.mathnet.ru/eng/sigma/v11/p82
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :71
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024