Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 078, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.078
(Mi sigma1059)
 

This article is cited in 13 scientific papers (total in 13 papers)

$\mathcal{D}$-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization

S. Twareque Alia, Fabio Bagarellobc, Jean Pierre Gazeaude

a Department of Mathematics and Statistics, Concordia University, Montréal, Québec, Canada H3G 1M8
b INFN, Torino, Italy
c Dipartimento di Energia, ingegneria dell’Informazione e modelli Matematici, Scuola Politecnica, Università di Palermo, I-90128 Palermo
d Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 Rio de Janeiro, Brazil
e APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris-Cité, 75205 Paris, France
References:
Abstract: The $\mathcal{D}$-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group $\mathrm{GL}(2,\mathbb{C})$ of invertible $2 \times 2$ matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions of a complex variable.
Keywords: pseudo-bosons; coherent states; quantization; complex Hermite polynomials; finite group representation.
Received: March 28, 2015; in final form September 21, 2015; Published online October 1, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Twareque Ali, Fabio Bagarello, Jean Pierre Gazeau, “$\mathcal{D}$-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization”, SIGMA, 11 (2015), 078, 23 pp.
Citation in format AMSBIB
\Bibitem{AliBagGaz15}
\by S.~Twareque~Ali, Fabio~Bagarello, Jean~Pierre~Gazeau
\paper $\mathcal{D}$-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
\jour SIGMA
\yr 2015
\vol 11
\papernumber 078
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1059}
\crossref{https://doi.org/10.3842/SIGMA.2015.078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362315900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943245237}
Linking options:
  • https://www.mathnet.ru/eng/sigma1059
  • https://www.mathnet.ru/eng/sigma/v11/p78
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :33
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024