Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 077, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.077
(Mi sigma1058)
 

This article is cited in 1 scientific paper (total in 1 paper)

Moments and Legendre–Fourier Series for Measures Supported on Curves

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, University of Toulouse, 7 Avenue du Colonel Roche, BP 54 200, 31031 Toulouse Cédex 4, France
Full-text PDF (387 kB) Citations (1)
References:
Abstract: Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution $\mu$ of the latter solves the former if and only if the measure $\mu$ is supported on a “trajectory” $\{(t,x(t))\colon t\in [0,T]\}$ for some measurable function $x(t)$. We provide necessary and sufficient conditions on moments $(\gamma_{ij})$ of a measure $d\mu(x,t)$ on $[0,1]^2$ to ensure that $\mu$ is supported on a trajectory $\{(t,x(t))\colon t\in [0,1]\}$. Those conditions are stated in terms of Legendre–Fourier coefficients ${\mathbf f}_j=({\mathbf f}_j(i))$ associated with some functions $f_j\colon [0,1]\to {\mathbb R}$, $j=1,\ldots$, where each ${\mathbf f}_j$ is obtained from the moments $\gamma_{ji}$, $i=0,1,\ldots$, of $\mu$.
Keywords: moment problem; Legendre polynomials; Legendre–Fourier series.
Received: August 28, 2015; in final form September 26, 2015; Published online September 29, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jean B. Lasserre, “Moments and Legendre–Fourier Series for Measures Supported on Curves”, SIGMA, 11 (2015), 077, 10 pp.
Citation in format AMSBIB
\Bibitem{Las15}
\by Jean~B.~Lasserre
\paper Moments and Legendre--Fourier Series for Measures Supported on~Curves
\jour SIGMA
\yr 2015
\vol 11
\papernumber 077
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1058}
\crossref{https://doi.org/10.3842/SIGMA.2015.077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362315800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943260008}
Linking options:
  • https://www.mathnet.ru/eng/sigma1058
  • https://www.mathnet.ru/eng/sigma/v11/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :32
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024