Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 072, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.072
(Mi sigma1053)
 

This article is cited in 4 scientific papers (total in 4 papers)

(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces

Jonathan Loranda, Alan Weinsteinb

a Department of Mathematics, ETH Zurich, Zurich, Switzerland
b Department of Mathematics, University of California, Berkeley, CA 94720 USA
Full-text PDF (353 kB) Citations (4)
References:
Abstract: We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over $\mathbb{Z}$, which takes one 10-tuple of invariants to the other.
Keywords: coisotropic subspace; direct sum decomposition; Poisson vector space; presymplectic vector space.
Received: March 1, 2015; in final form September 3, 2015; Published online September 10, 2015
Bibliographic databases:
Document Type: Article
MSC: 15A21; 18B10; 53D99
Language: English
Citation: Jonathan Lorand, Alan Weinstein, “(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces”, SIGMA, 11 (2015), 072, 10 pp.
Citation in format AMSBIB
\Bibitem{LorWei15}
\by Jonathan~Lorand, Alan~Weinstein
\paper (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
\jour SIGMA
\yr 2015
\vol 11
\papernumber 072
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1053}
\crossref{https://doi.org/10.3842/SIGMA.2015.072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361010100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941362863}
Linking options:
  • https://www.mathnet.ru/eng/sigma1053
  • https://www.mathnet.ru/eng/sigma/v11/p72
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :47
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024