Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 064, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.064
(Mi sigma1045)
 

This article is cited in 22 scientific papers (total in 22 papers)

${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

Stanislav Pakuliakabc, Eric Ragoucyd, Nikita A. Slavnove

a Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
b Institute of Theoretical & Experimental Physics, 117259 Moscow, Russia
c Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow reg., Russia
d Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France
e Steklov Mathematical Institute, Moscow, Russia
References:
Abstract: We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the ${\rm GL}(3)$-invariant $R$-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.
Keywords: Bethe ansatz; quantum affine algebras, composite models.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-90405-ukr-a
14-01-00860-a
13-01-12405-ofi-m2
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The work of S.P. was supported in part by RFBR-Ukraine grant 14-01-90405-ukr-a. N.A.S. was supported by the Program of RAS "Nonlinear Dynamics in Mathematics and Physics", RFBR-14-01-00860-a, RFBR-13-01-12405-ofi-m2.
Received: February 18, 2015; in final form July 22, 2015; Published online July 31, 2015
Bibliographic databases:
Document Type: Article
MSC: 17B37; 81R50
Language: English
Citation: Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp.
Citation in format AMSBIB
\Bibitem{PakRagSla15}
\by Stanislav~Pakuliak, Eric~Ragoucy, Nikita~A.~Slavnov
\paper ${\rm GL}(3)$-Based Quantum Integrable Composite Models. II.~Form Factors of Local Operators
\jour SIGMA
\yr 2015
\vol 11
\papernumber 064
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1045}
\crossref{https://doi.org/10.3842/SIGMA.2015.064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3375534}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359363300001}
\elib{https://elibrary.ru/item.asp?id=23997179}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938886652}
Linking options:
  • https://www.mathnet.ru/eng/sigma1045
  • https://www.mathnet.ru/eng/sigma/v11/p64
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024