Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 061, 26 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.061
(Mi sigma1042)
 

This article is cited in 22 scientific papers (total in 22 papers)

Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials

Yves Grandatia, Christiane Quesneb

a Equipe BioPhysStat, LCP A2MC, Université de Lorraine-Site de Metz, 1 bvd D.F. Arago, F-57070, Metz, France
b Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
References:
Abstract: We construct rational extensions of the Darboux–Pöschl–Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property.
Keywords: quantum mechanics; supersymmetry; orthogonal polynomials.
Received: March 26, 2015; in final form July 15, 2015; Published online July 28, 2015
Bibliographic databases:
Document Type: Article
MSC: 81Q05; 81Q60; 42C05
Language: English
Citation: Yves Grandati, Christiane Quesne, “Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials”, SIGMA, 11 (2015), 061, 26 pp.
Citation in format AMSBIB
\Bibitem{GraQue15}
\by Yves~Grandati, Christiane~Quesne
\paper Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
\jour SIGMA
\yr 2015
\vol 11
\papernumber 061
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma1042}
\crossref{https://doi.org/10.3842/SIGMA.2015.061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3373633}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359362800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938893818}
Linking options:
  • https://www.mathnet.ru/eng/sigma1042
  • https://www.mathnet.ru/eng/sigma/v11/p61
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024