Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 058, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.058
(Mi sigma1039)
 

This article is cited in 1 scientific paper (total in 1 paper)

Modular Classes of Lie Groupoid Representations up to Homotopy

Rajan Amit Mehta

Department of Mathematics & Statistics, Smith College, 44 College Lane, Northampton, MA 01063, USA
Full-text PDF (326 kB) Citations (1)
References:
Abstract: We describe a construction of the modular class associated to a representation up to homotopy of a Lie groupoid. In the case of the adjoint representation up to homotopy, this class is the obstruction to the existence of a volume form, in the sense of Weinstein's “The volume of a differentiable stack”.
Keywords: Lie groupoid; representation up to homotopy; modular class.
Received: February 24, 2015; in final form July 23, 2015; Published online July 25, 2015
Bibliographic databases:
Document Type: Article
MSC: 22A22; 53D17
Language: English
Citation: Rajan Amit Mehta, “Modular Classes of Lie Groupoid Representations up to Homotopy”, SIGMA, 11 (2015), 058, 10 pp.
Citation in format AMSBIB
\Bibitem{Meh15}
\by Rajan~Amit~Mehta
\paper Modular Classes of Lie Groupoid Representations up to Homotopy
\jour SIGMA
\yr 2015
\vol 11
\papernumber 058
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1039}
\crossref{https://doi.org/10.3842/SIGMA.2015.058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372949}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359362300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937856160}
Linking options:
  • https://www.mathnet.ru/eng/sigma1039
  • https://www.mathnet.ru/eng/sigma/v11/p58
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024