Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 056, 36 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.056
(Mi sigma1037)
 

This article is cited in 3 scientific papers (total in 3 papers)

From Polygons to Ultradiscrete Painlevé Equations

Christopher Michael Ormeroda, Yasuhiko Yamadab

a Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
b Department of Mathematics, Kobe University, Rokko, 657–8501, Japan
Full-text PDF (580 kB) Citations (3)
References:
Abstract: The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations.
Keywords: ultradiscrete; tropical; Painlevé; QRT; Cremona.
Received: January 29, 2015; in final form July 10, 2015; Published online July 23, 2015
Bibliographic databases:
Document Type: Article
MSC: 14T05; 14H70; 39A13
Language: English
Citation: Christopher Michael Ormerod, Yasuhiko Yamada, “From Polygons to Ultradiscrete Painlevé Equations”, SIGMA, 11 (2015), 056, 36 pp.
Citation in format AMSBIB
\Bibitem{OrmYam15}
\by Christopher~Michael~Ormerod, Yasuhiko~Yamada
\paper From Polygons to Ultradiscrete Painlev\'e Equations
\jour SIGMA
\yr 2015
\vol 11
\papernumber 056
\totalpages 36
\mathnet{http://mi.mathnet.ru/sigma1037}
\crossref{https://doi.org/10.3842/SIGMA.2015.056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359362100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937851599}
Linking options:
  • https://www.mathnet.ru/eng/sigma1037
  • https://www.mathnet.ru/eng/sigma/v11/p56
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :34
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024