Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 054, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.054
(Mi sigma1035)
 

This article is cited in 1 scientific paper (total in 1 paper)

Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds

Roger Nakada, Mihaela Pilcabc

a Notre Dame University-Louaizé, Faculty of Natural and Applied Sciences, Department of Mathematics and Statistics, P.O. Box 72, Zouk Mikael, Lebanon
b Fakultät für Mathematik, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
c Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21, Calea Grivitei Str, 010702-Bucharest, Romania
Full-text PDF (418 kB) Citations (1)
References:
Abstract: We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler–Einstein manifold of positive scalar curvature and endowed with particular ${\mathop{\rm spin}^c}$ structures. The limiting case is characterized by the existence of Kählerian Killing ${\mathop{\rm spin}^c}$ spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing ${\mathop{\rm spin}^c}$ spinor field vanishes. This extends to the ${\mathop{\rm spin}^c}$ case the result of A. Moroianu stating that, on a compact Kähler–Einstein manifold of complex dimension $4\ell+3$ carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.
Keywords: ${\mathop{\rm spin}^c}$ Dirac operator; eigenvalue estimate; Kählerian Killing spinor; parallel form; harmonic form.
Received: March 3, 2015; in final form July 2, 2015; Published online July 14, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Roger Nakad, Mihaela Pilca, “Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds”, SIGMA, 11 (2015), 054, 15 pp.
Citation in format AMSBIB
\Bibitem{NakPil15}
\by Roger~Nakad, Mihaela~Pilca
\paper Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on K\"ahler--Einstein Manifolds
\jour SIGMA
\yr 2015
\vol 11
\papernumber 054
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1035}
\crossref{https://doi.org/10.3842/SIGMA.2015.054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3369084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359361100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937944280}
Linking options:
  • https://www.mathnet.ru/eng/sigma1035
  • https://www.mathnet.ru/eng/sigma/v11/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :49
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024