Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 075, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.075
(Mi sigma103)
 

Prolongation Loop Algebras for a Solitonic System of Equations

Maria A. Agrotis

Department of Mathematics and Statistics, University of Cyprus, Nicosia 1678, Cyprus
References:
Abstract: We consider an integrable system of reduced Maxwell–Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the $n$-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.
Keywords: loop algebras; Bäcklund transformation; soliton solutions.
Received: September 13, 2006; in final form November 1, 2006; Published online November 8, 2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Maria A. Agrotis, “Prolongation Loop Algebras for a Solitonic System of Equations”, SIGMA, 2 (2006), 075, 15 pp.
Citation in format AMSBIB
\Bibitem{Agr06}
\by Maria A.~Agrotis
\paper Prolongation Loop Algebras for a~Solitonic System of Equations
\jour SIGMA
\yr 2006
\vol 2
\papernumber 075
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma103}
\crossref{https://doi.org/10.3842/SIGMA.2006.075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264891}
\zmath{https://zbmath.org/?q=an:1131.37058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235877}
Linking options:
  • https://www.mathnet.ru/eng/sigma103
  • https://www.mathnet.ru/eng/sigma/v2/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :47
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024