Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 048, 35 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.048
(Mi sigma1029)
 

This article is cited in 2 scientific papers (total in 2 papers)

General Boundary Formulation for $n$-Dimensional Classical Abelian Theory with Corners

Homero G. Díaz-Maríinab

a Escuela Nacional de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, C.P. 58350 Morelia, México
b Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58190 Morelia, México
Full-text PDF (526 kB) Citations (2)
References:
Abstract: We propose a general reduction procedure for classical field theories provided with abelian gauge symmetries in a Lagrangian setting. These ideas come from an axiomatic presentation of the general boundary formulation (GBF) of field theories, mostly inspired by topological quantum field theories (TQFT). We construct abelian Yang–Mills theories using this framework. We treat the case for space-time manifolds with smooth boundary components as well as the case of manifolds with corners. This treatment is the GBF analogue of extended TQFTs. The aim for developing this classical formalism is to accomplish, in a future work, geometric quantization at least for the abelian case.
Keywords: gauge fields; action; manifolds with corners.
Received: October 30, 2014; in final form June 4, 2015; Published online June 24, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Homero G. Díaz-Maríin, “General Boundary Formulation for $n$-Dimensional Classical Abelian Theory with Corners”, SIGMA, 11 (2015), 048, 35 pp.
Citation in format AMSBIB
\Bibitem{Dia15}
\by Homero~G.~D{\'\i}az-Mar{\'\i}in
\paper General Boundary Formulation for $n$-Dimensional Classical Abelian Theory with Corners
\jour SIGMA
\yr 2015
\vol 11
\papernumber 048
\totalpages 35
\mathnet{http://mi.mathnet.ru/sigma1029}
\crossref{https://doi.org/10.3842/SIGMA.2015.048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3359684}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356976500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934776962}
Linking options:
  • https://www.mathnet.ru/eng/sigma1029
  • https://www.mathnet.ru/eng/sigma/v11/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :30
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024