Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 038, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.038
(Mi sigma1019)
 

This article is cited in 19 scientific papers (total in 19 papers)

Invariant Classification and Limits of Maximally Superintegrable Systems in 3D

Joshua J. Capela, Jonathan M. Kressa, Sarah Postb

a Department of Mathematics, University of New South Wales, Sydney, Australia
b Department of Mathematics, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
References:
Abstract: The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials.
Keywords: integrable systems; superintegrable systems; Lie algebra invariants; contractions.
Received: February 3, 2015; in final form April 21, 2015; Published online May 8, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Joshua J. Capel, Jonathan M. Kress, Sarah Post, “Invariant Classification and Limits of Maximally Superintegrable Systems in 3D”, SIGMA, 11 (2015), 038, 17 pp.
Citation in format AMSBIB
\Bibitem{CapKrePos15}
\by Joshua~J.~Capel, Jonathan~M.~Kress, Sarah~Post
\paper Invariant Classification and Limits of Maximally Superintegrable Systems~in~3D
\jour SIGMA
\yr 2015
\vol 11
\papernumber 038
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1019}
\crossref{https://doi.org/10.3842/SIGMA.2015.038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343843}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355281700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84929430727}
Linking options:
  • https://www.mathnet.ru/eng/sigma1019
  • https://www.mathnet.ru/eng/sigma/v11/p38
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024